1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
use core::intrinsics::{unlikely, likely};
use core::ptr;
use sel4_common::{structures::exception_t, utils::{convert_to_type_ref, convert_to_mut_type_ref}, sel4_config::wordRadix, MASK};
use sel4_common::utils::{convert_to_option_mut_type_ref, MAX_FREE_INDEX};
use crate::cap::zombie::capCyclicZombie;
use super::{cap::{cap_t, CapTag, same_region_as, same_object_as, is_cap_revocable}, mdb::mdb_node_t, structures::{finaliseSlot_ret, resolveAddressBits_ret_t},
            deps::{finaliseCap, preemptionPoint, post_cap_deletion}};

#[repr(C)]
#[derive(Clone, Copy)]
pub struct deriveCap_ret {
    pub status: exception_t,
    pub cap: cap_t,
}

/// 由cap_t和 mdb_node 组成,是CSpace的基本组成单元
#[repr(C)]
#[derive(Clone, Copy, Default)]
pub struct cte_t {
    pub cap: cap_t,
    pub cteMDBNode: mdb_node_t,
}

impl cte_t {
    pub fn get_ptr(&self) -> usize {
        self as *const cte_t as usize
    }

    pub fn get_offset_slot(&mut self, index: usize) -> &'static mut Self {
        convert_to_mut_type_ref::<Self>(self.get_ptr() + core::mem::size_of::<cte_t>() * index)
    }

    pub fn derive_cap(&mut self, cap: &cap_t) -> deriveCap_ret {
        if cap.isArchCap() {
            return self.arch_derive_cap(cap);
        }
        let mut ret = deriveCap_ret {
            status: exception_t::EXCEPTION_NONE,
            cap: cap_t::default(),
        };

        match cap.get_cap_type() {
            CapTag::CapZombieCap => {
                ret.cap = cap_t::new_null_cap();
            }
            CapTag::CapUntypedCap => {
                ret.status = self.ensure_no_children();
                if ret.status != exception_t::EXCEPTION_NONE {
                    ret.cap = cap_t::new_null_cap();
                } else {
                    ret.cap = cap.clone();
                }
            }
            CapTag::CapReplyCap => {
                ret.cap = cap_t::new_null_cap();
            }
            CapTag::CapIrqControlCap => {
                ret.cap = cap_t::new_null_cap();
            }
            _ => {
                ret.cap = cap.clone();
            }
        }
        ret
    }

    fn arch_derive_cap(&mut self, cap: &cap_t) -> deriveCap_ret {
        let mut ret = deriveCap_ret {
            status: exception_t::EXCEPTION_NONE,
            cap: cap_t::default(),
        };
        match cap.get_cap_type() {
            CapTag::CapPageTableCap => {
                if cap.get_pt_is_mapped() != 0 {
                    ret.cap = cap.clone();
                    ret.status = exception_t::EXCEPTION_NONE;
                } else {
                    ret.cap = cap_t::new_null_cap();
                    ret.status = exception_t::EXCEPTION_SYSCALL_ERROR;
                }
            }
            CapTag::CapFrameCap => {
                let mut newCap = cap.clone();
                newCap.set_frame_mapped_address(0);
                newCap.set_frame_mapped_asid(0);
                ret.cap = newCap;
            }
            CapTag::CapASIDControlCap | CapTag::CapASIDPoolCap => {
                ret.cap = cap.clone();
            }
            _ => {
                panic!(" Invalid arch cap type : {}", cap.get_cap_type() as usize);
            }
        }
        ret
    }

    pub fn ensure_no_children(&self) -> exception_t {
        if self.cteMDBNode.get_next() != 0 {
            let next = convert_to_type_ref::<cte_t>(self.cteMDBNode.get_next());
            if self.is_mdb_parent_of(next) {
                return exception_t::EXCEPTION_SYSCALL_ERROR;
            }
        }
        return exception_t::EXCEPTION_NONE;
    }

    fn is_mdb_parent_of(&self, next: &Self) -> bool {
        if !(self.cteMDBNode.get_revocable() != 0) {
            return false;
        }
        if !same_region_as(&self.cap, &next.cap) {
            return false;
        }

        match self.cap.get_cap_type() {
            CapTag::CapEndpointCap => {
                assert_eq!(next.cap.get_cap_type(), CapTag::CapEndpointCap);
                let badge = self.cap.get_ep_badge();
                if badge == 0 {
                    return true;
                }
                return badge == next.cap.get_ep_badge() &&
                    !(next.cteMDBNode.get_first_badged() != 0);
            }
            CapTag::CapNotificationCap => {
                assert_eq!(next.cap.get_cap_type(), CapTag::CapNotificationCap);
                let badge = self.cap.get_nf_badge();
                if badge == 0 {
                    return true;
                }
                return badge == next.cap.get_nf_badge() &&
                    !(next.cteMDBNode.get_first_badged() != 0);
            }
            _ => true
        }
    }

    pub fn is_final_cap(&self) -> bool {
        let mdb = &self.cteMDBNode;
        let prev_is_same_obj = if mdb.get_prev() == 0 {
            false
        } else {
            let prev = convert_to_type_ref::<cte_t>(mdb.get_prev());
            same_object_as(&prev.cap, &self.cap)
        };

        if prev_is_same_obj {
            false
        } else {
            if mdb.get_next() == 0 {
                true
            } else {
                let next = convert_to_type_ref::<cte_t>(mdb.get_next());
                return !same_object_as(&self.cap, &next.cap);
            }
        }
    }

    pub fn is_long_running_delete(&self) -> bool {
        if self.cap.get_cap_type() == CapTag::CapNullCap || !self.is_final_cap() {
            return false;
        }
        match self.cap.get_cap_type() {
            CapTag::CapThreadCap | CapTag::CapZombieCap | CapTag::CapCNodeCap => true,
            _ => false,
        }
    }

    unsafe fn finalise(&mut self, immediate: bool) -> finaliseSlot_ret {
        let mut ret = finaliseSlot_ret::default();
        while self.cap.get_cap_type() != CapTag::CapNullCap {
            let fc_ret = finaliseCap(&self.cap, self.is_final_cap(), false);
            if cap_removable(&fc_ret.remainder, self) {
                ret.status = exception_t::EXCEPTION_NONE;
                ret.success = true;
                ret.cleanupInfo = fc_ret.cleanupInfo;
                return ret;
            }
            self.cap = fc_ret.remainder;
            if !immediate && capCyclicZombie(&fc_ret.remainder, self) {
                ret.status = exception_t::EXCEPTION_NONE;
                ret.success = false;
                ret.cleanupInfo = fc_ret.cleanupInfo;
                return ret;
            }
            let status = self.reduce_zombie(immediate);
            if exception_t::EXCEPTION_NONE != status {
                ret.status = status;
                ret.success = false;
                ret.cleanupInfo = cap_t::new_null_cap();
                return ret;
            }

            let status = preemptionPoint();
            if exception_t::EXCEPTION_NONE != status {
                ret.status = status;
                ret.success = false;
                ret.cleanupInfo = cap_t::new_null_cap();
                return ret;
            }
        }
        ret

    }

    pub fn delete_all(&mut self, exposed: bool) -> exception_t {
        let fs_ret = unsafe { self.finalise(exposed) };
        if fs_ret.status != exception_t::EXCEPTION_NONE {
            return fs_ret.status;
        }
        if exposed || fs_ret.success {
            self.set_empty(&fs_ret.cleanupInfo);
        }
        return exception_t::EXCEPTION_NONE;
    }

    pub fn delete_one(&mut self) {
        if self.cap.get_cap_type() != CapTag::CapNullCap {
            let fc_ret = unsafe { finaliseCap(&self.cap, self.is_final_cap(), true) };
            assert!(
                cap_removable(&fc_ret.remainder, self) && fc_ret.cleanupInfo.get_cap_type() == CapTag::CapNullCap
            );
            self.set_empty(&cap_t::new_null_cap());
        }
    }

    fn set_empty(&mut self, cleanup_info: &cap_t) {
        if self.cap.get_cap_type() != CapTag::CapNullCap {
            let mdb_node = self.cteMDBNode;
            let prev_addr = mdb_node.get_prev();
            let next_addr = mdb_node.get_next();
            if prev_addr != 0 {
                let prev_node = convert_to_mut_type_ref::<cte_t>(prev_addr);
                prev_node.cteMDBNode.set_next(next_addr);
            }

            if next_addr != 0 {
                let next_node = convert_to_mut_type_ref::<cte_t>(next_addr);
                next_node.cteMDBNode.set_prev(prev_addr);
                let first_badged = ((next_node.cteMDBNode.get_first_badged() != 0) || (mdb_node.get_first_badged() != 0)) as usize;
                next_node.cteMDBNode.set_first_badged(first_badged);
            }
            self.cap = cap_t::new_null_cap();
            self.cteMDBNode = mdb_node_t::default();
            unsafe { post_cap_deletion(cleanup_info) };
        }
    }

    fn reduce_zombie(&mut self, immediate: bool) -> exception_t {
        assert_eq!(self.cap.get_cap_type(), CapTag::CapZombieCap);
        let self_ptr = self as *mut cte_t as usize;
        let ptr = self.cap.get_zombie_ptr();
        let n = self.cap.get_zombie_number();
        let zombie_type = self.cap.get_zombie_type();
        assert!(n > 0);
        if immediate {
            let end_slot = unsafe { &mut *((ptr as *mut cte_t).add(n - 1)) };
            let status = end_slot.delete_all(false);
            if status != exception_t::EXCEPTION_NONE {
                return status;
            }
            match self.cap.get_cap_type() {
                CapTag::CapNullCap => {
                    return exception_t::EXCEPTION_NONE;
                }
                CapTag::CapZombieCap => {
                    let ptr2 = self.cap.get_zombie_ptr();
                    if ptr == ptr2 && self.cap.get_zombie_number() == n && self.cap.get_zombie_type() == zombie_type {
                        assert_eq!(end_slot.cap.get_cap_type(), CapTag::CapNullCap);
                        self.cap.set_zombie_number(n - 1);
                    } else {

                        assert!(ptr2 == self_ptr && ptr != self_ptr);
                    }
                }
                _ => {
                    panic!("Expected recursion to result in Zombie.")
                }
            }
        } else {
            assert_ne!(ptr, self_ptr);
            let next_slot = convert_to_mut_type_ref::<cte_t>(ptr);
            let cap1 = next_slot.cap;
            let cap2 = self.cap;
            cte_swap(&cap1, next_slot, &cap2, self);
        }
        exception_t::EXCEPTION_NONE
    }

    #[inline]
    fn get_volatile_value(&self) -> usize {
        unsafe {
            let raw_value = ptr::read_volatile((self.get_ptr() + 24) as *const usize);
            let mut value = ((raw_value >> 2) & MASK!(37)) << 2;
            if (value & (1usize << 38)) != 0 {
                value |= 0xffffff8000000000;
            }
            value
        }
    }

    #[inline]
    pub fn revoke(&mut self) -> exception_t {
        while let Some(cte) = convert_to_option_mut_type_ref::<cte_t>(self.get_volatile_value()) {
            if !self.is_mdb_parent_of(cte) {
                break;
            }

            let mut status = cte.delete_all(true);
            if status != exception_t::EXCEPTION_NONE {
                return status;
            }

            status = unsafe { preemptionPoint() };
            if status != exception_t::EXCEPTION_NONE {
                return status;
            }
        }
        return exception_t::EXCEPTION_NONE;
    }
}

/// 将一个cap插入slot中并维护能力派生树
///
/// 将一个new_cap插入到dest slot中并作为src slot的派生子节点插入派生树中
pub fn cte_insert(new_cap: &cap_t, src_slot: &mut cte_t, dest_slot: &mut cte_t) {
    let srcMDB = &mut src_slot.cteMDBNode;
    let srcCap = &(src_slot.cap.clone());
    let mut newMDB = srcMDB.clone();
    let newCapIsRevocable = is_cap_revocable(new_cap, srcCap);
    newMDB.set_prev(src_slot as *const cte_t as usize);
    newMDB.set_revocable(newCapIsRevocable as usize);
    newMDB.set_first_badged(newCapIsRevocable as usize);

    /* Haskell error: "cteInsert to non-empty destination" */
    assert_eq!(dest_slot.cap.get_cap_type(), CapTag::CapNullCap);
    /* Haskell error: "cteInsert: mdb entry must be empty" */
    assert!(dest_slot.cteMDBNode.get_next() == 0 && dest_slot.cteMDBNode.get_prev() == 0);

    setUntypedCapAsFull(srcCap, new_cap, src_slot);

    (*dest_slot).cap = new_cap.clone();
    (*dest_slot).cteMDBNode = newMDB;
    src_slot.cteMDBNode.set_next(dest_slot as *const cte_t as usize);
    if newMDB.get_next() != 0 {
        let cte_ref = convert_to_mut_type_ref::<cte_t>(newMDB.get_next());
        cte_ref.cteMDBNode.set_prev(dest_slot as *const cte_t as usize);
    }
}

pub fn insert_new_cap(parent: &mut cte_t, slot: &mut cte_t, cap: &cap_t) {
    let next = parent.cteMDBNode.get_next();
    slot.cap = cap.clone();
    slot.cteMDBNode = mdb_node_t::new(next as usize, 1usize, 1usize,
                                      parent as *const cte_t as usize);
    if next != 0 {
        let next_ref = convert_to_mut_type_ref::<cte_t>(next);
        next_ref.cteMDBNode.set_prev(slot as *const cte_t as usize);
    }
    parent.cteMDBNode.set_next(slot as *const cte_t as usize);
}

/// 将一个cap插入slot中并删除原节点
///
/// 将一个new_cap插入到dest slot中并作为替代src slot在派生树中的位置
pub fn cte_move(new_cap: &cap_t, src_slot: &mut cte_t, dest_slot: &mut cte_t) {
    /* Haskell error: "cteInsert to non-empty destination" */
    assert_eq!(dest_slot.cap.get_cap_type(), CapTag::CapNullCap);
    /* Haskell error: "cteInsert: mdb entry must be empty" */
    assert!(
        dest_slot.cteMDBNode.get_next() == 0
            && dest_slot.cteMDBNode.get_prev() == 0
    );
    let mdb = src_slot.cteMDBNode;
    dest_slot.cap = new_cap.clone();
    src_slot.cap = cap_t::new_null_cap();
    dest_slot.cteMDBNode = mdb;
    src_slot.cteMDBNode = mdb_node_t::new(0, 0, 0, 0);

    let prev_ptr = mdb.get_prev();
    if prev_ptr != 0 {
        let prev_ref = convert_to_mut_type_ref::<cte_t>(prev_ptr);
        prev_ref.cteMDBNode.set_next(dest_slot as *const cte_t as usize);
    }
    let next_ptr = mdb.get_next();
    if next_ptr != 0 {
        let next_ref = convert_to_mut_type_ref::<cte_t>(next_ptr);
        next_ref.cteMDBNode.set_prev(dest_slot as *const cte_t as usize);
    }
}

/// 交换两个slot,并将新的cap数据填入
pub fn cte_swap(cap1: &cap_t, slot1: &mut cte_t, cap2: &cap_t, slot2: &mut cte_t) {
    let mdb1 = slot1.cteMDBNode;
    let mdb2 = slot2.cteMDBNode;
    {
        let prev_ptr = mdb1.get_prev();
        if prev_ptr != 0 {
            convert_to_mut_type_ref::<cte_t>(prev_ptr).cteMDBNode.set_next(slot2 as *const cte_t as usize);
        }
        let next_ptr = mdb1.get_next();
        if next_ptr != 0 {
            convert_to_mut_type_ref::<cte_t>(next_ptr).cteMDBNode.set_prev(slot2 as *const cte_t as usize);
        }
    }

    slot1.cap = cap2.clone();
    //FIXME::result not right due to compiler

    slot2.cap = cap1.clone();
    slot1.cteMDBNode = mdb2;
    slot2.cteMDBNode = mdb1;
    {
        let prev_ptr = mdb2.get_prev();
        if prev_ptr != 0 {
            convert_to_mut_type_ref::<cte_t>(prev_ptr).cteMDBNode.set_next(slot1 as *const cte_t as usize);
        }
        let next_ptr = mdb2.get_next();
        if next_ptr != 0 {
            convert_to_mut_type_ref::<cte_t>(next_ptr).cteMDBNode.set_prev(slot1 as *const cte_t as usize);
        }
    }
}


#[inline]
fn cap_removable(cap: &cap_t, slot: *mut cte_t) -> bool {
    match cap.get_cap_type() {
        CapTag::CapNullCap => {
            return true;
        }
        CapTag::CapZombieCap => {
            let n = cap.get_zombie_number();
            let ptr = cap.get_zombie_ptr();
            let z_slot = ptr as *mut cte_t;
            return n == 0 || (n == 1 && slot == z_slot);
        }
        _ => {
            panic!("Invalid cap type , finaliseCap should only return Zombie or NullCap");
        }
    }
}


fn setUntypedCapAsFull(srcCap: &cap_t, newCap: &cap_t, srcSlot: &mut cte_t) {
    if srcCap.get_cap_type() == CapTag::CapUntypedCap
        && newCap.get_cap_type() == CapTag::CapUntypedCap
    {
        assert_eq!(srcSlot.cap.get_cap_type(), CapTag::CapUntypedCap);
        if srcCap.get_untyped_ptr() == newCap.get_untyped_ptr()
            && srcCap.get_untyped_block_size() == newCap.get_untyped_block_size()
        {
            srcSlot.cap.set_untyped_free_index(
                MAX_FREE_INDEX(srcCap.get_untyped_block_size())
            );
        }
    }
}

/// 从cspace寻址特定的slot
///
/// 从给定的cnode、cap index、和depth中找到对应cap的slot,成功则返回slot指针,失败返回找到的最深的cnode
#[allow(unreachable_code)]
pub fn resolve_address_bits(node_cap: &cap_t, cap_ptr: usize, _n_bits: usize) -> resolveAddressBits_ret_t {
    let mut ret = resolveAddressBits_ret_t::default();
    let mut n_bits = _n_bits;
    ret.bitsRemaining = n_bits;
    let mut nodeCap = node_cap.clone();

    if unlikely(nodeCap.get_cap_type() != CapTag::CapCNodeCap) {
        ret.status = exception_t::EXCEPTION_LOOKUP_FAULT;
        return ret;
    }

    loop {
        let radixBits = nodeCap.get_cnode_radix();
        let guardBits = nodeCap.get_cnode_guard_size();
        let levelBits = radixBits + guardBits;
        assert_ne!(levelBits, 0);
        let capGuard = nodeCap.get_cnode_guard();
        let guard = (cap_ptr >> ((n_bits - guardBits) & MASK!(wordRadix))) & MASK!(guardBits);
        if unlikely(guardBits > n_bits || guard != capGuard) {
            ret.status = exception_t::EXCEPTION_LOOKUP_FAULT;
            return ret;
        }
        if unlikely(levelBits > n_bits) {
            ret.status = exception_t::EXCEPTION_LOOKUP_FAULT;
            return ret;
        }
        let offset = (cap_ptr >> (n_bits - levelBits)) & MASK!(radixBits);
        let slot = unsafe { (nodeCap.get_cnode_ptr() as *mut cte_t).add(offset) };

        if likely(n_bits == levelBits) {
            ret.slot = slot;
            ret.bitsRemaining = 0;
            return ret;
        }
        n_bits -= levelBits;
        nodeCap = unsafe { (*slot).cap.clone() };
        if unlikely(nodeCap.get_cap_type() != CapTag::CapCNodeCap) {
            ret.slot = slot;
            ret.bitsRemaining = n_bits;
            return ret;
        }
    }
    panic!("UNREACHABLE");
}